ATOMIC ENERGY EDUCATION SOCIETY

DISTANCE EDUCATION PROGRAMME

CLASS 8- MATHEMATICS

CHAPTER-3

UNDERSTANDING QUADRILATERALS

MODULE-1/4

Module-1

1) Polygon-Definition
2) Classification of polygons
3) Diagonal of a polygon
3)Convex \& concave polygons
4)Regular and Irregular polygons
5)Angle sum property of a quadrilateral
4) Angle sum property of a polygon
5) Problems.

3. Understanding quadrilaterals

Let us learn some terms like polygon, convex \&concave polygon, regular \& irregular polygon.
1)Polygon- A simple closed figure made up of only line segments is called a polygon.

2) For a figure to be a polygon we need minimum 3 line segments. Polygons are classified according to the number of sides. Classification of polygons is as follows.

Name	Number of sides	Example
Triangle	3	
Quadrilateral	4	
Pentagon	5	
Hexagon	6	
Heptagon	8	
Octagon	9	
Donagon	10	
Decagon	12	
n-gon	n	

3) Diagonal of a polygon- A line segment joining two non-consecutive vertices is called as a diagonal. Let us see how many diagonals are there in the following polynomials.

Triangle
3 sides
0 diagonals

Quadrilateral 4 sides
2 diagonals

Pentagon
5 sides
5 diagonals

Hexagon 6 sides
9 diagonals

Can you generalise this for a polynomial having ' n ' sides?
No. of diagonals of a polygon $=\frac{n(n-3)}{2}, n>3$
of ' n ' sides
Note - There is only one polygon which has number of sides and number of diagonals same and it is pentagon.
4) Convex and Concave polygon - A polygon is said to be a convex polygon if the line segment joining any two points in its interior lies completely in its interior. A polygon which is not convex Is called as concave polygon.

CONVEX POLYGON

CONCAVE POLYGON

CONCAVE PENTAGON

CONVEX PENTAGON

You can see that in a convex polygon each of the interior angles is less than 180° where as in a concave polygon you can see that one of the interior angles is greater than 180°. Also in a convex polygon no portion of the diagonal is in its exterior. In a concave polygon one of the diagonal except its end points lies in the exterior of the polygon.

Let us see some more convex and concave polygons.

6) Regular and Irregular polygons - A polygon is said to be a regular polygon if all its sides and all its angles are equal.
Let us see some examples of regular and irregular polygons.

Regular polygons

Irregular polygons

7) Angle sum property of a polygon - We know that sum of the angles of a triangle is 180°. Let us find the sum of the angles of a quadrilateral.

This is an activity in which all the four angles of the quadrilateral ABCD are cut and joined together forming a circle.

This implies that sum of the four angles of a quadrilateral is 360° or 2 straight angles or 4 right angles.
i. e. $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$

Let us prove that sum of the angles of a quadrilateral is 360° In $\triangle A B C, \angle 4+\angle 5+\angle 6=180^{\circ}----(1)$
In $\triangle \mathrm{ACD}, \angle 1+\angle 2+\angle 3=180^{\circ}$
Adding equations (1) and (2), we get, $\angle 4+\angle 5+\angle 6+\angle 1+\angle 2+\angle 3=180+180^{\circ}$ Or, $(\angle 1+\angle 4)+\angle 6+(\angle 2+\angle 5)+\angle 3=360^{\circ}$ Or, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
Hence,
sum of the angles of a quadrilateral is 360°

Figure	No. of sides	No. of triangles	Angle sum
	4	2	$\begin{gathered} 2 \times 180^{\circ} \\ =360^{\circ} \end{gathered}$
	5	3	$\begin{gathered} 3 \times 180^{\circ} \\ =540^{\circ} \end{gathered}$
	n	$\mathrm{n}-2$	$(\mathrm{n}-2) \times 180^{\circ}$

You have seen that in a quadrilateral the no. of triangles formed is 2.In a pentagon the no. of triangles formed is 3.So you can observe that in a polygon the number of triangles is two less than that of the number of sides.

In a quadrilateral, no. of triangle =2
Therefore, angle sum of a quadrilateral $=2 \times 180^{\circ}=360^{\circ}$ In a pentagon, no. of triangles $=3$
Hence, angle sum of a pentagon $=3 \times 180^{\circ}=540^{\circ}$
In general, angle sum of a polygon of ' n ' sides $=(n-2) \times 180^{\circ}$

In a regular polygon we know that all the angles are equal. Hence, if we want to find out the measure of each angle of a regular polygon, then, m (interior angle of a regular polygon) $=\frac{(\boldsymbol{n - 2) x} \mathbf{1 8 0}}{n}$

Practice Problems

Q.1.Find the sum of angles of a convex polygon of 8 sides. Soln. We know, angle sum of a polygon of ' n ' sides $=(n-2) \times 180^{\circ}$ Number of sides $=8$,i.e. It is an octagon.
\therefore sum of angles of an octagon $=(8-2) \times 180^{\circ}$

$$
\begin{aligned}
& =6 \times 180^{\circ} \\
& =1080^{\circ}
\end{aligned}
$$

Q.2. The angles of a quadrilateral are $120^{\circ}, 130^{\circ}, 50^{\circ}$. Find the fourth angle.
Soln. Let the measure of the fourth angle be $=x^{\circ}$

We know that sum of the angles of a quadrilateral is $=360^{\circ}$
So, $120^{\circ}+130^{\circ}+50^{\circ}+x^{\circ}=360^{\circ}$
i.e. $300^{\circ}+x^{\circ}=360^{\circ}$, Thus, $x^{\circ}=360^{\circ}-300^{\circ}=60^{\circ}$
Q. 3 Find the measure of each of the interior angle of a regular pentagon.
Soln. In a regular polygon, we know that,

$$
\begin{aligned}
\text { measure of interior angle } & =\frac{(n-2) \times 180^{\circ}}{n} \\
& =\frac{(5-2) \times 180^{\circ}}{5} \\
& =\frac{3 \times 180^{\circ}}{5} \\
& =\frac{540^{\circ}}{5}
\end{aligned}
$$

Measure of each int. angle of a regular pentagon $=108^{\circ}$
Q.4. Find the angles of a quadrilateral if its angles are in the ratio 1:2;3:4 Soln. Let the angles of a quadrilateral be $x, 2 x, 3 x \& 4 x$

By angle sum property of a quadrilateral, we get

$$
\begin{aligned}
x+2 x+3 x+4 x & =360 \\
10 x= & 360 \\
x & =360 / 10=36 \\
2 x= & \times 36=72 \\
3 x & =3 \times 36=108 \\
4 x & =4 \times 36=144
\end{aligned}
$$

Thus 4 angles of the quadrilateral are $36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}$.

Worksheet 1
 Module1/4
 Understanding Quadrilaterals

Q.1. Fill in the blanks

1. A quadrilateral has ------diagonals.
2. The sum of the angles of a quadrilateral is ------.
3. The sum of the angles of a quadrilateral is ----- right angles.
4. The number of sides and the number of diagonals is same in a --.
5. The regular polygon having 4 sides is called a -----.
Q.2. The angles of a quadrilateral are in the ratio 3:5:7:9. Find the angles of the quadrilateral.
Q.3. Three angles of a quadrilateral are equal. Fourth angle is of measure 150°. What is the measure of each of the equal angles ?
Q. 4.Three angles of a quadrilateral are $110^{\circ}, 50^{\circ}$ and 40°. find the measure of its fourth angle.
Q.5. If the sum of two angles of a quadrilateral is 180°, what is the sum of remaining two angles?
Q.6. How many sides has a regular polygon, each angle of which is of measure 108° ?
Q.7. The interior angle of a regular polygon is 156°. Find the number of sides of the polygon.
Q.8. What is the measure of each angle of a regular hexagon ?
Q.9. Find ' x ' in the figure shown aside.

Q.10.Find ' x ' in the following figures.
a)

b)

c)

ch. 3 Understanding Quadrilateral Handout 1/4

1)Polygon- A simple closed figure made up of only line segments is called a polygon.
2)No. of diagonals of a polygon $=n(n-3) / 2$
3) Convex and Concave polygon - A polygon is said to be a convex polygon if the line segment joining any two points in its interior lies completely in its interior. A polygon which is not convex Is called as concave polygon.
4) Regular and Irregular polygons - A polygon is said to be a regular polygon if all its sides and all its angles are equal.
5)Sum of angles of a polygon $=(n-2) \times 180^{\circ}, n \geq 4$

Thank You

Made by- Bhavana Dale AECS-1,TARAPUR

